Resonant Removal of Exomoons during Planetary Migration
نویسندگان
چکیده
Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star’s habitable zone formed further out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called “evection resonance.” Within this resonance, the lunar orbit’s eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about ∼ 10 planetary radii are susceptible to this mechanism, with the exact number dependent upon the planetary mass, oblateness and physical size. Whether moons survive or not is critically related to where the planet began its inward migration as well as the character of inter-lunar perturbations. For example, a Jupiter-like planet currently residing at 1 AU could lose moons if it formed beyond ∼ 5 AU. Cumulatively, we suggest that an observational census of exomoons could potentially inform us on the extent of inward planetary migration, for which no reliable observational proxy currently exists.
منابع مشابه
A Possible Correlation between the Gaseous Drag Strength and Resonant Planetesimals in Planetary Systems
We study the migration and resonant capture of planetesimals in a planetary system consisting of a gaseous disc analogous to the primordial solar nebula and a Neptune-like planet. Using a simple treatment of the drag force we find that planetesimals are mainly trapped in the 3:2 and 2:1 resonances and that the resonant populations are correlated with the gaseous drag strength in a sense that th...
متن کاملTurbulence in Extrasolar Planetary Systems Implies That Mean Motion Resonances Are Rare
This paper considers the effects of turbulence on mean motion resonances in extrasolar planetary systems and predicts that systems rarely survive in a resonant configuration. A growing number of systems are reported to be in resonance, which is thought to arise from the planet migration process. If planets are brought together and moved inward through torques produced by circumstellar disks, th...
متن کاملOn the evolution of the resonant planetary system HD 128311
A significant number of the known multiple exoplanetary systems are containing a pair of giant planets engaged in a low order mean motion resonance. Such a resonant condition protects the dynamics of these planets resulting in very stable orbits. According to recent studies the capture into a resonance is the result of a planetary migration process induced by the interaction of the planets with...
متن کاملThe resonant structure of Jupiter’s trojan asteroids-II. What happens for different configurations of the planetary system
In a previous paper, we have found that the resonance structure of the present Jupiter Trojan swarms could be split up into four different families of resonances. Here, in a first step, we generalize these families in order to describe the resonances occurring in Trojan swarms embedded in a generic planetary system. The location of these families changes under a modification of the fundamental ...
متن کاملHabitability of Exomoons at the Hill or Tidal Locking Radius
Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. W...
متن کامل